1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
|
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = x.pow(2) + 0.2 * torch.rand(x.size())
x, y = Variable(x), Variable(y)
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output): super().__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x): x = torch.relu(self.hidden(x)) x = self.predict(x) return x
net = Net(1, 10, 1)
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()
plt.ion()
for t in range(1000): pre = net(x)
loss = loss_func(pre, y)
optimizer.zero_grad() loss.backward() optimizer.step()
if t % 5 == 0: plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), pre.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1)
plt.ioff() plt.show()
|